Math 246C Lecture 20 Notes

Daniel Raban

May 20, 2019

1 Failure of the Riemann Mapping Theorem and Solving the $\overline{\partial}$ -Equation

1.1 Failure of the Riemann mapping theorem in several complex variables

Theorem 1.1 (Poincaré). Let $D = \{z \in \mathbb{C} : |z| < 1\}$, and let $D^2 = D_z \times D_w \subseteq \mathbb{C}^2$ be the unit bidisc. There is no biholomorphic map $D^2 \to B_2 = \{(z, w) \in \mathbb{C}^2 : |z|^2 + |w|^2 < 1\}$, the unit ball in \mathbb{C}^2 .

Remark 1.1. The Riemann mapping theorem does not hold for domains in \mathbb{C}^n for n > 1.

Remark 1.2. Intuition: ∂D^2 contains non-constant analytic discs (holomorphic $f: D \to \partial D^2$), while ∂B_2 does not.

Proof. Assume that there exists a biholomorphic map $f: D^2 \to B_2$. Write $f(z, w) = (f^1(z, w), f^2(z, w))$. Let $w_0 \in \partial D_w$, and let $w_n \in D$ be such that $w_n \to w_0$. Then for any $z \in D, (z, w_n) \to (z, w_0) \in \partial D^2$. Then $|f(z, w_n)| \to 1$ (here, we only use that f is **proper**: for any compact $K \subseteq B_2, f^{-1}(K)$ is compact).

On the other hand, we have $g_n(z) := f(z, w_n) \in \operatorname{Hol}(D, \mathbb{C}^2)$ with $|g_n(z)| \leq 1$. By normal families, passing to a subsequence, we get $g_n \to g \in \operatorname{Hol}(D, \mathbb{C}^2)$ locally uniformly. We have |g(z)| = 1 for all $z \in D$.

We claim that g(z) is constant. Write $g(z) = (g^1(z), g^2(z))$, where

$$|g^{1}(z)|^{2} + |g^{2}(z)|^{2} = 1$$
 $z \in D.$

Apply ∂_z :

$$(\partial_z g^1)\overline{g^1} + (\partial_z g^2)\overline{g^2} = 0.$$

Apply $\partial_{\overline{z}}$:

$$|\partial_z g^1|^2 + |\partial_z g^2|^2 = 0.$$

So $\partial_z g^i = 0$, and we get the claim.

Thus, $f(z, w_n)$ converges to a constant so that $f'_z(z, w_n) \to 0$. Let $z = z_0 \in D$ be fixed, and consider $h(w) = f'_z(z_0, w) = (h^1(w), h^2(w)) \in \text{Hol}(D, \mathbb{C}^2)$. Write by Cauchy's integral formula:

$$h^{j}(w) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f^{j}(\zeta, w)}{(\zeta - z_{0})^{2}} d\zeta, \qquad |z_{0}| < r < 1.$$

h is bounded in *D*, so the radial limits $\lim_{r\to 1} h(rw_0)$ exist for almost every $w_0 \in \partial D$. We have that $h(w_n) \to 0$ if $w_n \to w_0 \in \partial D$. It follows that $\lim_{r\to 1} h(rw_0) = 0$ for almost every $w_0 \in \partial D$, and by the uniqueness theorem, $h(w) \equiv 0$ for |w| < 1. We get that $f'_z(z, w) = 0$ for all $(z, w) \in D^2$, so f = f(w). Replacing the role of z and w, we get that f is constant.

1.2 Solving the ∂ -equation with compactly supported right hand side

Recall that if $\varphi \in C_0^k(\mathbb{C})$ with $k \ge 1$ and we set

$$u(z) = -\frac{1}{\pi} \iint \frac{\varphi(\zeta)}{\zeta - z} L(d\zeta),$$

then $u \in C^k(\mathbb{C})$, and $\frac{\partial u}{\partial \overline{z}} = \varphi$.

Remark 1.3. In general, the equation $\frac{\partial u}{\partial \overline{z}} = \varphi$ has no solutions with compact support.

In \mathbb{C}^n , when n > 1, the $\overline{\partial}$ -equation is a system:

$$\frac{\partial u}{\partial \overline{z}_j} = f_j, \qquad 1 \le j \le n.$$

This is an overdetermined system, which cannot be solved unless the right hand side satisfies the compatibility conditions

$$\frac{\partial f_j}{\partial \overline{z}_k} = \frac{\partial f_k}{\partial \overline{z}_j} \qquad 1 \le j, k \le n.$$

Remark 1.4. If we view $\overline{\partial} u = \sum_{j=1}^{n} \frac{\partial u}{\partial \overline{z}_j} d\overline{z}_j$ as a 1-form and introduce the 1-form $f = \sum_{j=1}^{n} f_j d\overline{z}_j$, then the system becomes

$$\overline{\partial}u = f.$$

If we define the 2-form $\overline{\partial} f = \sum_{j=1}^{n} \overline{\partial} f_j \wedge d\overline{z}$, then the compatibility conditions become $\overline{\partial} f = 0$:

$$\overline{\partial}f = \sum_{j=1}^n \left(\sum_{k=1}^n \frac{\partial f_j}{\partial \overline{z}_k} \, d\overline{z}_k\right) \wedge dz_j = \sum_{j < k} \left(\frac{\partial f_j}{\partial \overline{z}_k} - \frac{\partial f_k}{\partial z_j}\right) \, d\overline{z}_k \wedge d\overline{z}_j$$

Theorem 1.2. Let $f_j \in C_0^k(\mathbb{C}^n)$ for $1 \leq j \leq n$ and n > 1 be such that $\overline{\partial} f = 0$. Then the equation $\overline{\partial} u = f$ has a solution $u \in C_0^k(\mathbb{C}^n)$.

Remark 1.5. Such a solution is unique: if $u, \tilde{u} \in C_0^k(\mathbb{C}^n)$, then $\overline{\partial}(u - \tilde{u}) = 0$. So $u - \tilde{u} \in Hol(\mathbb{C}^n)$ with compact support. So $u = \tilde{u}$.

Proof. Consider $\frac{\partial u}{\partial \overline{z}_j}$ for $1 \leq j \leq n$. Define

$$u(z) = -\frac{1}{\pi} \iint_{\mathbb{C}} \frac{f_1(\zeta_1, z_2, \dots, z_n)}{\zeta_1 - z_1} L(d\zeta_1) = -\frac{1}{\pi} \iint_{\mathbb{C}} \frac{f_1(\zeta_1 + z_1, z_2, \dots, z_n)}{\zeta_1} L(d\zeta_1).$$

Then $u \in C^k(\mathbb{C}^n)$, and $\frac{\partial u}{\partial \overline{z}_1} = f_1$.

We will continue the proof next time.